ANN for neutrino event Selection

- Performance of an ANN, (ANN3) constructed for neutrino event selection, on the 82 event sample selected from period 1 as neutrino interactions and on the new strip files of period 1.
- Explanation of the deviations from what expected.
- Construction and performance (on the 82 event sample and the new strip files) of a second different ANN (ANN4) as an attempt to account for possible changes on the selection criteria for both "signal" and "background" events.
- Results and conclusions.

First ANN (ANN3) Training set - Input Variables

• Training Set: We are limited to use as "signal" training set the 887 neutrino events and as "background" training set events randomly selected from OLD nustrip files.

• Input variables:

- TDC value differences T3-T2,T2-T1,T3-T1
- Calorimeter energy along y=0 and |x| > 100 cm
- Number of SF, DC, VDC, MID hits,
- Total Pulse height, % of SF hits in Stations 1 2 3 & 4
- Total Energy in the EMCAL, number of Clusters, Average Cluster Energy,mean angle of clusters with respect to the z-axis from the interaction vertex
- Number of SF lines, DC tracks, Final tracks
- Number of vertices, vertex in or out the emulsion module

First ANN (ANN3) Output probability distributions

With a cut (a) 0.2 in the network output function we select:

SIGNAL with efficiency: 95 % purity 85% contamination 16%

First ANN (ANN3) Output distribution on 82 period 1 events

- The **distribution** of the output function of ANN 3 on the 82 selected neutrino events **should leave** ~ 5 % of the events (5 events) **below 0.2.**
- In this case 24 % is below 0.2 (20 events) and is far from what expected.
- Either some of these events are not neutrino interactions or they are "new" to the ANN (the ANN has been trained with different neutrino events)

Characteristics of the 20 events below 0.2 cut from ANN3

- Looking at these events with event display we observed that they all have the **following characteristics** (shown in the next distributions):
 - Lots of activity in the SF 's consistent with (most probably) shower initialization.
 - No or very little energy in the EMCAL
 - No or very few DC hits and DC tracks

Characteristics of the 20 events below 0.2 cut from ANN3 (Distributions)

% of events with the previous characteristics on the 82 and 877 neutrino events

82 (per1)

877(all)

99(of all in per1)

% of events with EMCAL energy = 0

12 %

2%

4%

% of events with DC hits < 20

38 %

12%

4%

Construction of ANN 4 for neutrino event selection

- If during this scanning neutrino events are selected in a different way (selection criteria are changed) then ANN3 will not select such events since it is not trained to do so.
- Constructing ANN 4 we exclude variables related with EMCAL and DC info and add variables related with SF information as an attempt to account for these changes.
- Input variables of ANN 4:
 - Number of SF hits above 400 ph cut, Total Pulse height (ph cut)
 - % of hits and pulse height downstream the vertex, % of hits and pulse height upstream the vertex,% of "interaction" hits (ph cut), % of hits in each SF station, number of SF lines.
 - Number of VC hits,MID central hits, EMCAL energy along y=0 |x| > 100 cm.
 - T31,T21,T32

ANN 4 Output probability distributions

With a cut @ 0.2 in the network output function we select :

SIGNAL with efficiency: 95 % purity 81% contamination 21%

ANN4 output distribution on 82 per1 events

- 5 % (4 events) of the 82 events is expected to be below 0.2
- 1.2 % (1 event) is below 0.2.
- This ANN4 seems more efficient in selecting neutrino events because by construction is more tolerant.

ANN and Signal/Background

- We should also examine both ANN's taking into account the Signal/Background ratio improvement.
- In cases where the number of "signal" events is expected to be very small compared to that of the "background" the Signal/Background improvement after setting the cut must also be examined.

• In the present case:

- Signal events ~ 80 , Background events ~ 3300 then S/B $\sim 2.4 \%$
- With a cut @0.2 ANN3 should improve :
 S/B ~ 12 % (select 700 events from which 78 are neutrino)
- With a cut @0.2 ANN4 should improve :
 S/B ~ 10 % (select 780 events from which 78 are neutrino)

ANN3 & ANN4 - S/B on new strip files of per1

• The event sample consists of the ~ 3500 events in the new strip files of period 1 from which the 82 events have been selected as neutrino interactions.

ANN3 - S/B \sim 5 % (selects 1233 events from which 62 are neutrino) ANN4 - S/B \sim 4 % (selects 2184 events from which 81 are neutrino)

• Both are lower than what expected ⇒ Different criteria on selecting events to create the new strip files?

ANN3 & ANN4 - S/B on old strip files of per1

288/1310 events selected

380/1310 events selected

• Strip files 2907, 2911 2913,2929 ~ **1310 events & ~ 10 neutrino events**

ANN 3
$$\frac{S}{B_{initial}} = 0.8\%$$
, $\frac{S}{B_{expected}} = 4.5\%$, $\frac{S}{B_{observed}} = 3.5\%$

ANN 4
$$\frac{S}{B_{initial}} = 0.8\%, \frac{S}{B_{expected}} = 3.5\%, \frac{S}{B_{observed}} = 2.6\%$$

Conclusions

- The possible change on the criteria with which "background" (strip files) and "signal" (neutrino) events are now selected affects the performance of both ANNs.
- As a result they are functioning below their capabilities.
- But both ANNs improve the signal to background ratio by a factor of 2 or even better and can be used anyhow.
 - (ANN3 selects 1233/3433 events in which and 62/82 neutrino events are present & ANN4 selects 2184/3433 in which 81/82 neutrino events are present).
- If the criteria for "background" (strip files) selection stay unchanged for period 3 and 4, then the performance of the ANNs on these event samples will be even better.